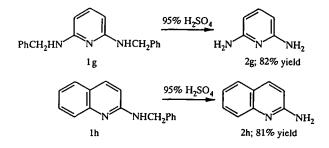
## ACID-CATALYZED N-DEBENZYLATION OF BENZYLAMINOPYRIDINES

## P. Kowalski, Z. Majka, and T. Kowalska

TABLE 1

Acid-catalyzed N-debenzylation reaction of 2-benzylaminopyridine and 2-(*p*-methoxybenzylamino)pyrimidine with 10% HCl gave 2-aminopyridine and 2-aminopyrimidine in 16% and 27% yield, respectively [1]. The highest yields of the N-debenzylation reaction was observed for pyridazine derivatives, when the reaction was carried out in concentrated HBr, HClO<sub>4</sub> or H<sub>2</sub>SO<sub>4</sub> [2]. Pawlowski and Gorczyca [3] used 94-98% H<sub>2</sub>SO<sub>4</sub> to deprotect 8-benzylaminotheophylline and its derivatives; they obtained debenzylated 8-aminotheophyllines in very good yields.


This communication presents our results on the acid-catalyzed N-debenzylation reaction. We observed that 2benzylaminopyridine (1a) was deprotected with 95%  $H_2SO_4$  to give 2-aminopyridine (2a) in 85% yield. Preliminary experiments indicated that 85%  $H_2SO_4$  is the minimal concentration ensuring the effective debenzylation of 2benzylaminopyridine (1a), while the highest yields were obtained for 95%  $H_2SO_4$ . Under the same conditions 4benzylaminopyridine (1b) underwent debenzylation to 4-aminopyridine (2b), but 3-benzylaminopyridine (1c) and Nbenzylaniline (1d) did not undergo such deprotection in 95%  $H_2SO_4$ .

To check the applicability of this method to other amines, 2-benzylamino-5-benzylpyridine (1e) and 2-(N-benzyl-N-methyl)aminopyridine (1f) were chosen. For these compounds selective N-debenzylation might be expected. It was found previously [4] that 2-benzylamino-5-benzylpyridine hydrochloride underwent N-debenzylation to 2-amino-5-benzylpyridine (2e) in 44% yield at 250°C. We have found that 1e and 1f undergo N-debenzylation also in 95%  $H_2SO_4$ , yielding 2e and 2-aminomethylpyridine (2f) in 80% and 73% yield, respectively (Table 1).

The experimental results indicated that N-debenzylation reaction of N-benzylaminopyridines occurred only when the benzylamino group was at the 2 or 4 position (1a, 1b, 1e, 1f). We expected that this method should be useful for synthesis of  $\alpha$ - or  $\gamma$ -aminoderivatives of azaaromatic systems. Our preliminary results support this assumption. Debenzylation of 2,6-dibenzylaminopyridine (1g) led to 2,6-diaminopyridine (2g) and debenzylation of 2-benzylaminoquinoline (1h) provided 2-aminoquinoline (2h).

| $R^{1}$ $NR^{2}CH_{2}Ph \xrightarrow{95\% H_{2}SO_{4}} R^{1}$ $Ia-f \xrightarrow{2a,b,e,f}$ |    |                    |                |                                                    |                         |    |                    |                |          |
|---------------------------------------------------------------------------------------------|----|--------------------|----------------|----------------------------------------------------|-------------------------|----|--------------------|----------------|----------|
| Starting substance                                                                          |    |                    |                |                                                    | Product of the reaction |    |                    |                |          |
| Comp.                                                                                       | х  | R <sup>1</sup>     | R <sup>2</sup> | Location of<br>-NR <sup>2</sup> CH <sub>2</sub> Ph | Comp.                   | x  | R <sup>1</sup>     | R <sup>2</sup> | Yield, % |
| la                                                                                          | N  | н                  | н              | 2                                                  | 2a                      | N  | н                  | н              | 85       |
| 16                                                                                          | N  | н                  | н              | 4                                                  | 2ь                      | N  | н                  | н              | 78       |
| lc                                                                                          | N  | н                  | н              | 3                                                  | 2c                      | N  | н                  | н              | _        |
| 1 d                                                                                         | Сн | н                  | н              | 1                                                  | 2d                      | Сн | н                  | н              | _        |
| le                                                                                          | N  | CH <sub>2</sub> Ph | н              | 2                                                  | 2e                      | N  | CH <sub>2</sub> Ph | н              | 80       |
| lf                                                                                          | N  | н                  | CH3            | 2                                                  | 2f                      | N  | н                  | CH3            | 73       |

Institute of Organic Chemistry and Technology, Cracow University of Technology, 31-133 Cracow, Poland. Published in Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 845-846, June, 1998. Original article submitted May 15, 1998.



General Procedure for N-Debenzylation Reaction of Benzylaminoderivatives (1a-h) in the Presence of 95%  $H_2SO_4$ . A solution of 1 g of the respective benzylamine in 5 ml of 95%  $H_2SO_4$  was left standing for 24 h at room temperature. The dark solution was poured into 25 ml of water, and an ice-cooled mixture was neutralized to pH 4 using 15% NaOH. The precipitate was filtered off. The pH value of the filtrate was adjusted to 10 with 15% NaOH and the solution was extracted with CHCl<sub>3</sub>. The residue after evaporation of the solvent was recrystallized. Reaction yields are presented in Table 1 and in the scheme.

## REFERENCES

- 1. G. Sunagawa, T. Kushima, and I. Ichii, J. Pharm. Soc. Jpn., 72, 1570 (1952); Chem. Abs., 47, 9285 (1953).
- 2. F. Parravicini, G. Scarpitta, L. Dorigotti, and G. Pifferi, Il Farmaco (Ed. Sci.), 33, 99 (1977).
- 3. M. Pawlowski and M. Gorczyca, Polish. J. Chem., 55, 837 (1981).
- 4. P. Kowalski, J. Heterocycl. Chem., 28, 875 (1991).